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The paper proposes a new strategy to improve the performance of a standard non-dominated sorting algorithm (NSGA) in 

approximating the Pareto-optimal solutions of a multi-objective problem by introducing new individuals in the population miming the 

effect of migrations. The design optimization of a power inductor, synthesizing a uniform magnetic field for magneto-fluid 

hyperthermia applications, is considered as a case study to assess the performance of the migration-modified NSGA algorithm. 

 
Index Terms—Multiobjective optimization, genetic algorithm, Pareto optimality, magnetic field, finite-element analysis. 

 

I. INTRODUCTION 

VOLUTIONARY algorithms are successfully applied to 

optimize the design of electromagnetic devices [1]–[4]. In 

particular, NSGA-II is a popular and well-assessed genetic 

algorithm for general-purpose multiobjective optimization 

used in different fields to find Pareto front [1], [3], [5], [6]. 

This algorithm has proven to work very well when the 

population comprises a large number of individuals, so it is 

usually coupled with objectives described by analytical 

functions. In recent years, the NSGA-II has been also coupled 

to Finite Element Analysis (FEA) and objective function 

values are obtained from numerical solutions of field 

equations. Due to computational cost, the number of evaluated 

individuals has to be reduced and then, the optimization 

results sometimes are not completely satisfactory in terms of 

identification of the Pareto front. Some authors have proposed 

modifications in NSGA algorithm to improve algorithm 

convergence or quality of solutions [7].  

In some cases, NSGA-II generation algorithm is not able to 

sufficiently perturb the population and its result can lead to 

finding local or incomplete Pareto Fronts. In this paper it is 

proposed to enhance the perturbation by means of a set of 

individuals that migrates in the current population. In the past, 

similar kinds of algorithms that include a migration strategy 

have been developed under the frame of parallel computing: 

accordingly, migration is referred to an exchange of 

individuals between islands that evolve autonomously [8]–

[10]. In turn, “island” paradigms mimic the phenomenon of 

natural populations evolving without exchange with the 

external environment, such as those that might occur within 

ocean islands with limited migration [8]  

In this paper, a straightforward correction to a standard 

NSGA-II [1], [3] in terms of a migrating population is 

proposed. The corrected algorithm improves the Pareto front 

estimation in problems for which the objective functions time 

computation does not allow the use of a large number of 

individuals for each generation. The design optimization of a 

power inductor, synthesizing a uniform magnetic field for 

magneto-fluid hyperthermia applications, is considered as the 

case study to assess the performance of Migration-NSGA [10]. 

II. MIGRATION-CORRECTED NSGA-II 

NSGA-II mimics the evolution of a population with internal 

selection of better individuals. Here, the migration strategy is 

introduced as an external population enhancing the original 

one. Fig. 1 shows the flow chart of the proposed algorithm. 

.  
Fig. 1 Flow chart of MNSGA algorithm. 

NSGA migration mimics a population that is suddenly 

increased by a group of individuals, immigrants that have 

different characteristics with respect to originating population. 

Immigrants can integrate with the original population carrying 

different genes. This way, genetic heritage of the population 

can mutate. In the proposed approach, the immigrated 

population arrives just after the generation of the new 

population and before the selection of better individuals. In 

this way, only the new individuals with better characteristics 

among the original and immigrating population are selected.  

The migration of a population is ruled by two parameters:  

a. Tm i.e. period of migration (e.g. Tm=1 is equivalent to 

introduce a migration at every iteration);  

b. Nm i.e. number of individuals in the migrated population. 

The number of individuals after selection is kept constant 

by means of selection and emigration events. The emigration 

step is managed in the selection algorithm. Among the 

eliminated individuals, a subgroup of individuals dies and a 
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subgroup emigrates. In both cases some individuals drop out 

from the current population during the selection step of the 

NSGA-II algorithm.  

III. CASE STUDY: POWER INDUCTOR FOR TREATING 

MAGNETIC NANOPARTICLES 

The axial-symmetric geometry of a power inductor is 

sketched in Fig. 1: it incorporates a two-turn winding and four 

ferrite blocks. The field analysis problem is governed by A-V 

formulation and was solved by means of a FEA code [11], 

[12]. The design variables are the vertical positions of the 

ferrite ring on the top, the sizes of the ferrite block in the 

bottom and the vertical size and turn step of the inductor, 

respectively. The optimization objectives are the magnetic 

field inhomogeneity, to be minimized, and average magnetic 

field strength in the box P, to be maximized. In fact, this is a 

prerequisite for heating uniformly the solution of magnetic 

nanoparticles contained in P. 

    
Fig. 2. Finite Element Analysis of the power inductor: geometry and magnetic 
field lines. 

 
Fig. 3. Three different Pareto fronts and relevant starting individual sets for 
the same optimization problem.  

Fig. 3 shows the obtained Pareto fronts obtained using a 

traditional implementation of NSGA-II [12], starting from 

three different initial populations of 20 individuals. The 

obtained fronts are different: therefore, NSGA fails in 

approximating the real Pareto front of the problem. In turn, 

migration NSGA has been applied to the same problem. 

Parameters Tm and Nm have been set equal to 2 and 20, 

respectively. The number of individuals at convergence is 494 

(31 of which located on Pareto front) for MNSGA and 418 (45 

of which located on Pareto front) for traditional NSGA 

algorithm. MNSGA converges after 17 generations, whereas 

NSGA converges after 21. As far as the convergence behavior 

is concerned, a stop criterion related to the distance of each 

individual from the utopia point of the objective space is 

defined. Fig. 4 (b) shows the value of stop criterion vs iteration 

for both NSGA and MNSGA: the convergence of both 

algorithms exhibits an oscillating behavior, but the one with 

migrating population, i.e. MNSGA, converges in fewer 

iterations for a given threshold.  

Considering the same stating population, in Fig. 4 (a) the 

Pareto fronts obtained using MNSGA and standard NSGA-II 

algorithm are shown, respectively. Remarkably, the front 

obtained using MNSGA is broader than the other one. 

(a)  

(b)   

Fig. 4. (a) Pareto fronts find using MNSGA and traditional NSGA algortithm 
starting from the same population. (b) Convergence behavior. 

IV. CONCLUSION 

The proposed algorithm modifies a standard NSGA-II in terms 

of a migrating population. It improves the Pareto front 

approximation when the computational cost of the objective 

functions does not allow a large number of individuals per 

generation. 
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